
Abstract: The dynamic model for links in most mechanisms 
has often based on small deflection theory without considering 
shear deformation. For applications like light-weight links or 
high-precision elements, it is necessary to capture the deflection 
caused by shear forces. A complete dynamic model is presented 
here to characterize the motion of a compliant link capable of 
large deflection with shear deformation. We derive the 
governing equations from Hamilton’s principle along with the 
essential geometric constraints that relate deformation and 
coordinate variables, and solve them using a semi-discrete 
method based on the Newmark scheme and shooting method 
that avoids the problem of shear locking that occurs when using 
finite element method. The dynamic model has been validated 
experimentally.  We expect that the dynamic model will serve as 
a basis for analyzing a wide spectrum of compliant multi-link 
mechanisms.   
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1. INTRODUCTION
Dynamic analyses of compliant links have been a subject 

of interest for simulation and control of flexible mechanical 
systems. Examples include space robot arms and high-speed 
robotic manipulators. These dynamic models are often based 
on the assumption of small deflection without considering 
shear deformation. This assumption is satisfactory provided 
that the link undergoes a small deflection such that the theory 
of linear elasticity holds. However, for applications involving 
highly compliant links (such as rubber fingers in [1],
light-weight arms, and high-precision elements), the effects 
of large deflection with shear deformation on the link motion 
cannot be ignored. In order to predict more accurately the 
deflected shape during transient, there is a need to model the 
dynamics that capture the shear deformation of a deflected 
compliant link. 

In the last two decades, several approaches have been 
developed to analyze compliant links undergoing large 
deflection and overall rotation. Javier [2] has divided this 
research field into three groups. The first is the simplified 
elasto-dynamic method originally proposed by Winfrey [3]. 
This approach assumes that small deformation does not affect 
rigid body motion in order to decouple the rigid body motion 
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from the link deformation. The second is the floating frame 
method based on defining the deformation relative to a 
floating frame which follows the rigid body motion of the link. 
For example, see [4] and [5]. This method makes use of linear 
finite element (FE) theory since reliable FE packages are 
widely available. Although this method can account for shear 
deformation, the deflection is assumed to be small in order for 
the linear theory of elasticity to hold. The third is the large 
rotation vector method [6~7] based on defining the overall 
motion plus deformation with respect to the inertial frame. 
Unlike the floating frame method, this method allows large 
deflection of compliant link. As a result, nonlinear FE method 
(FEM) has to be used. This method, when solved using FEM, 
can lead to excessive shear forces known as shear locking [9] 
as pointed out by Shabana [8]. 

We present here a dynamic model based on the 
generalization of classical beam theory so that it can capture 
the shear deformation of a large-deflected compliant link. 
The classical beam theory was originated by Daniel Bernoulli, 
which assumes that a straight line transverse to the axis of the 
beam before deformation remains straight, inextensible, and 
normal to the mid-plane after deformation. Another 
important but implicit assumption for classical beam theory is 
that the deflection must be small. Rayleigh [10] latter 
included the rotatory inertia in the equation of motion. 
Timoshenko [11] further revealed that the effect of rotatory 
inertia is small for low frequency vibration but at high 
frequency the shear stress deformation is comparable to 
rotatory inertia. However, in order to derive a linear 
differential equation, the above classical theory and its 
subsequent modifications approximate the curvature of the 
link: 

2
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dx
yd

ds
d (1)

where is the angle of rotation of the link; and s is the arc 
length from origin to point (x,y) of the link. The 
approximation in (1) is only valid for dy/dx << 1 and hence, 
the classical beam theory is limited to small link deflections.  
 The difficulty to describe the motion of links undergoing 
large deflection  lies on proper relations between angle of 
rotation  and coordinate variables (x, y). This is because the 
curvature d /ds is needed to describe the strain energy in 
addition to the coordinate variables needed to express the 
kinetic energy. In order to characterize the dynamics of a 
compliant link, a geometrically exact curvature formula is 
necessary. The exact curvature equation that can describe 
dynamics of a large-deflected link can be found in most 
calculus textbooks:
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When the deflection is small, i.e., dy/dx <<1, (2) reduces to 
(1). Equation (2) has been used in several papers to formulate 
the dynamic equations of a link, such as Reddy et al. [12] and 
Monasa et al. [13]. However, as pointed out by Hodges [14], 
(2) defines the curvature along coordinate x, which is on the 
original undeflected position of the beam. It does not take into 
account the well-known shortening effect due to transverse 
deflections. This resulting error is often unacceptable in many 
applications where large deflection is of particular concern. 
In order to overcome this problem, we can parameterize x and 
y by the arc length s. This leads to another curvature equation;  

yxyx
ds
d

(3)

where )(sxx ; )(syy ; and the prime denotes derivative 
with respect to s.  Equation (3) has been used by Wagner [15] 
to derive the dynamic equations of a large-deflected beam, 
where the square of (3) is substituted into the strain energy 
function of the beam in deriving the governing equations 
based on Hamilton’s principle. However, the resulting 
equations are highly coupled and cannot account for shear 
deformation of the link. 
 Based on the above observations, we develop a 
geometrically accurate relation between the angle of rotation 
and coordinate variables that can be easily incorporated in the 
dynamic model of large-deflected links. While the previous 
angle of rotation is defined without considering shear effect 
(see (1), (2), and (3)), this paper provides two constraint 
equations in the derivation of dynamical equations so that 
angle of rotation induced by bending and shear can both be 
accommodated.

This paper extends the finger model in [16] to account for 
the effects of link compliance on the dynamic response. 
Specifically, this paper offers the following: 
1. We present a distributed-parameter dynamic model to 

predict the motion of a large-deflected link, which 
accounts for bending, shear, and axial deformation. The 
model incorporates geometric constraint equations to 
characterize the nonlinear kinematics of a deformed link. 

2. We offer a method to numerically solve the governing 
equation of a compliant link.  In the time domain we use 
Newmark algorithm while in spatial domain we use 
shooting method. As will be shown, the shooting method 
avoids the problem of shear locking. 

3. We illustrate and validate experimentally the modeling of 
the link dynamics with a numerical example. 

2. DYNAMIC MODEL OF COMPLIANT LINK 
The dynamic model of complaint link is formulated in two 

steps. First, we develop two geometric constraint functions to 
relate the deformation and coordinate variables. Second, we 
incorporate the constraint equations in the variational form 
and apply Hamilton’s principle to derive the governing 
equations of the link.   

2.1 Geometric Constraints 
Figure 1 shows a deflected link of length L in the reference 

X-Y, where the local frame x-y is attached to the link with its 
x-axis pointing to the initially straight, undeflected axis of the 
link. In order to fully describe the deflected shape, we define 

as the deflection angle induced by bending, and as the 
shear angle. Hence the total angle of rotation is + . Fig. 2(b) 
shows an infinitesimal segment ds of the link, the coordinate 
of which can therefore be described by its geometric center (x,
y) and the orientation + . We also introduce the axial 
deformation variable e so that the distance between two 
adjacent infinitesimal segments is ds+de. The variables x, y, ,

, and e are functions of arc length s and time t. They can be 
expressed explicitly as ),( tsx and ),( tsy , etc. 

Figure 1 Schematic of a compliant beam 

(a) Trigonometric relation (b)Infinitesimal segment 
Figure 2 Schematic of an infinitesimal segment 

Since the plane motion has only three degrees of freedom, 
three of the five variables (x, y, e) are independent. The 
trigonometry relating the coordinates (x, y) to deformation 
variables ( e) in the x-y frame can be derived with the aid 
of Fig. 2(a) and are stated as two geometric constraints: 

0)cos()1(1 exg (4a)
0)sin()1(2 eyg (4b)

Compared with (2) and (3), the shear angle  can be 
embedded in the two geometric constraints in (4) easily. Note 
that Rao et al. [17] have similar constraint equations but again 
their model cannot capture shear deformation.  

In order to express the relations (4) in the X-Y frame, we 
need the following coordinate transformation equation.

0ppp f (5)
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Combining (4) and (5), we have the following geometric 
constraints in the X-Y frame: 

0)1(p e (6a,b)
where

)(
)(

sY

sX
p ; and 

)sin(
)cos(

At this point, rather than deriving the explicit expressions for 
and  from (6), we show in Subsection 2.2 that these two 

equations can be appended in the variational form by 
multiplying two Lagrange multipliers, which result from 
using more variables (five) than enough (three). 

2.2 Hamilton’s Principle 
With (6), the equation of motion of the link can be 

systematically derived using Hamilton’s principle, where the 
following variational form holds: 

0)(
2

1

dtWVK
t

t

nc (7)

where K and V are the kinetic and potential energy of the link 
respectively; Wnc is the virtual work done by 
nonconservative forces; and  t1 and t2 are two arbitrary instant 
of time. 

Following the standard procedure of Hamilton’s principle, 
we first form the total kinetic energy of the link as  

L
dsYXAIK

0

222
2
1 )()( (8)

where I is moment of inertia of the link; is the angle of 
rotation induced by bending moment; A is mass per unit 
length; and the dot over the variable denotes the time 
derivative of the variable.  

Similarly, the potential (strain) energy of the beam can also 
be expressed as

L
dseEAGAEIV

0

222
2
1 )()( (9)

where A is cross-section area and I is the moment of area; 
E and G are the modulus of elasticity and the modulus of 
shear respectively; is the shear correction factor; is the 
shear angle; and e is the axial elongation. The 1st, 2nd, and 3rd

term of (9) represent the strain energy due to bending, shear, 
and axial deformation respectively.  

Equations (8) and (9) express the kinetic and potential 
energy functions in standard quadratic forms. The 
nonconservative forces applied at the link include a 
prescribed rotation and an external force F at the origin Of.
Dissipative forces proportional to the angular velocity can 
also be accommodated. As an illustration, we use mass 
proportional damping model to formulate the virtual work as 
follows:   

LTnc dsIttEIW
0

0)(),0( pF (10)

where  is the damping coefficient. Here, we multiply the 
geometrical constraints (6a,b) by the Lagrange multipliers, h
and v, respectively. Integrating the sum of the 

Lagrange-multiplied constraints over the range [t1, t2], the 
following integral equation identical to zero is obtained: 

0
2

1
21 dtvghg

t

t
(11)

Since (11) is equal to zero, we can subtract it from (7) so that 
we have enough independent variables for the variational 
procedure. By taking the delta operator , we have 

0
2

1
21 dtgvghWVK

t

t

nc (12)

The resulting system of partial differential equations that 
governs the dynamics of large-deflected link can be obtained 
using standard manipulations of variational calculus [18]. We 
further introduce non-dimensional independent variable 

]1,0[/ Lsu to replace s, for example, x(s,t) = x(u,t). The 
equations can be written as follows after normalization. 

0)1()(2
T

L
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II
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(13a)

0TLeEA (13b)

0)1( GA
L
e T (13c)

0pLA (13d,e)

0)1(1 p
L
e

L
(13f,g)

where Tvh ; and 
)sin(
)cos(

Functions h and v are Lagrange multipliers corresponding to 
(13f) and (13g) respectively. They turn out to be the reaction 
forces of an infinitesimal segment in the X and Y direction as 
shown in Fig. 2(b).  The physical interpretations of each 
equation in (13) are stated as follows. 
1. Equation (13a) is the moment balance equation. The 

rotational inertia in the term is often small, and can be 
neglected in structural applications. Without deformation, 
this equation can be reduced to the one that governs 
rigid-body rotation. 

2. Equation (13b) is the force balance equation in the 
deformed axial direction. Without the angle of rotation, it 
reduces to the familiar 2nd order differential equation that 
governs the axial deformation of a link. 

3. Equation (13c) states the shear stress-strain relation where 
the shear stress comes from the reaction forces h and v.

4. Equations (13d,e) are the results of applying Newton’s 2nd

law to each infinitesimal segment directly. 
5. Equations (13f,g) are the normalization of (6). They have 

to be solved simultaneously with (13a)~(13e). 
When the compliant link governed by (13) is subject to a 

prescribed rotation at Of and free at the other end, the 
geometric boundary conditions can be given as follows. 

),0( t , 0),0( te

with ),0( tX and ),0( tY prescribed (14a)

From calculus of variation, we can deduce the natural 
boundary conditions of the link from (14a).  
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0),1( tv , 0),1( th , 0),1( t

0][ 1u
TeEA

(14b)

Hence we now have enough (eight) boundary conditions in 
order to solve (13). 

3 NUMERICAL APPROXIMATIONS 
Equation (13) with the boundary conditions (14) is a 

system of nonlinear hyperbolic equations with differential 
constraint equations. We present here a semi-discrete method 
to solve (13) and (14) numerically. Specifically, the spatial 
domain u is solved using shooting method while the temporal 
domain t is solved with Newmark family of integration 
schemes. For clarity of illustration with limited space, we 
focus on the model of a free-vibrating link with the following 
assumptions: 
(a) The origin Of is clamped at O with x-y parallel to X-Y,

i.e., =I. Hence, only frame x-y is needed to describe 
the link.

(b) The link is inextensible and has no damping, e=0 and 
=0.

The governing equations of a free-vibrating link can then 
be reduced from (13) to (15): 

0)sin()cos(2 hvI
L

EI
(15a)

0hxLA (15b)
0vyLA (15c)

0)cos(Lx ; 0)sin(Ly (15d,e)
0)sin()cos( GAhv (15f)

While developed for a vibrating link, the extension of the 
numerical scheme to the complete governing equations (13) 
is rather straightforward.

3.1 Temporal Approximation 
Motivated by stability considerations, we use the Newmark 

family of time integration schemes [19] for temporal 
discretization. Let the position kZ , its velocity kZ , and 
acceleration kZ denote the approximate solution to 
z(tk,u), ),( utz k ,and ),( utz k at time level tk and 

]1,0[u respectively. Assume the solutions of kZ , kZ ,
and kZ have been obtained, the Newmark method is an 
implicit scheme that finds the approximate solution at next 
time level tk+1 according to the following formulae

kkkkk Z
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Z )11(2)(
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22
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2
1 (16a)

1111 )1( kkkk ZtaZtaZZ (16b)
where t= tk+1 - tk denotes the time step size and (a1, a2) are 
Newmark parameters that determine the stability and 
accuracy of the scheme. By applying (16a), the terms 
involving time derivatives in (15) can be discretized in the 
time domain. Following the same convention as above, we 
use capital letters to represent the approximate solutions, for 
example, k (tk, u). The discretized differential equations 
at tk+1 can be written as follows. 
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111 cos kkk LX , 111 sin kkk LY       (17d,e)
0)sin(cos 1111111 kkkkkkk GAHV (17f)

Equation (17) is a system of time-independent differential 
and algebraic equations involving unknown functions k+1,

1k , Hk+1, Vk+1, Xk+1, Yk+1, and k+1. The method to solve (17) 
will be presented in the next section. At the end of time step 
k+1, the approximate functions ),( 11 kk , ),( 11 kk XX ,
and ),( 11 kk YY will be computed by using (16). Note that the 
calculation of (17) requires knowledge of the initial 
conditions ),,( 000 , ),,( 000 XXX  and ),,( 000 YYY . The 
initial positions and velocities will be given and the initial 
accelerations can be obtained by assuming zero applied force 
at t=0 for free vibration of a compliant link. 

020
IL

EI , 00X , 00Y (18)

3.2 Spatial Approximation
After temporal discretization, the governing equation 

reduces to the nonlinear boundary value problem represented 
by (17). Nonlinear finite element method (NFEM) has often 
been adopted to solve the BVP numerically. However, the 
formulation of NFEM is often complicated. In addition, when 
using FEM to solve problems with shear deformation, there is 
a numerical problem known as shear locking [9] caused by 
inadmissible interpolation functions. While several 
procedures have been made to overcome this problem, we 
propose in this section an alternative numerical formulation 
called shooting method that does not suffer from the problem 
of shear locking.

The basic idea of shooting method is to treat boundary 
value problems as initial value problems. Consider the 
following system of n differential equations 

),( qfq u (19)
where ]1,0[u ; qk(0) is a (n-r)x1 vector of known initial 
values; qu(0) is a rx1 vector of unknown initial values; and 
qk(1) is a rx1 vector of known terminal values.  In order to 
integrate (19) as an initial value problem, we have to make r
guesses for unknown initial values qu(0). The IVP can be 
integrated numerically using MATLAB ODE solver. After 
obtaining the trajectories of q, the r given terminal values 
qk(1) have to be matched in order for the solution q to be true. 
Hence the procedure is similar to solving r nonlinear
algebraic equations except that the explicit forms of the 
algebraic equations are not known. Iterative procedures used 
for the shooting method can be found in [20~21].  
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By setting T
kkkkkk YXVH ],,,,,[ 111111q , we 

can recast (17a)~(17e) in the form of a nonlinear ODE  
coupled with an algebraic equation (17f). The known initial 
and terminal values of a vibrating link are 

TT
kkkk YX 000)0()0()0()0( 111q

TT
kkkk VH 000)1()1()1()1( 111q

(20)

Hence we have to make initial guesses for qu(0) to match the 
given terminal values qk(1). The ODE’s from (17a)~(17e) can 
be integrated by Runge-Kutta methods. Note that (17f) is not 
a differential equation. Hence we cannot incorporate it into 
the ODE’s. However, we still need to know k+1 at each R-K 
step. Since (17f) is true for the entire spatial domain, we can 
solve it separately at every R-K step j. As shown in (21), the 
values Vk+1, j, Hk+1, j, k+1, j are known at the jth step. Hence (21) 
is a nonlinear equation with one variable k+1, j. It can be 
easily solved by bisection method. After obtaining the value 
of k+1, j, we can then proceed the next R-K step j+1 from (17) 
and get the valuesVk+1, j+1, Hk+1, j+1, k+1, j+1.

0)sin(

cos

,1,1,1,1

,1,1,1

jkjkjkjk

jkjkjk

GAH

V
(21)

In summary, the steps for solving the vibrating link 
problem are outlined as follows. 
Computational Steps:
1. Given (a1,a2) with initial conditions ),,( 000 ,

),,( 000 XXX  and ),,( 000 YYY ,
2. For k=0~# of time steps 

(I) Given initial guesses qu, solve for q by an iterative 
method. At each Runge-Kutta step j, solve (21) to 
obtain k+1,j by bisection method. The value k+1,j will 
be used for the next step j+1.

(II)After obtaining q, calculate ),( kk , ),( kk XX ,

and ),( kk YY from (16). 
End

4 SIMULATIONS AND EXPERIMENT VALIDATION 
By using the numerical schemes described in the previous 

section, we simulate the free vibration of a flexible steel rod 
whose governing equations are expressed in (15). The 
simulation parameters are listed in Table 1. The Newmark 
parameters (a1, a2) are (0.5, 0.5), which is known as the 
constant-average acceleration method and can be proved to 
be unconditionally stable for any time step. Fig. 3 shows the 
tip displacement and Fig. 4 shows the snapshots of the 
vibrating beam, which has a period approximately equal to 
0.49 seconds. 
Table 1 Simulation parameters and values for a steel rod 
Simulation Parameters Values 
Density  7850 kg/m3

Dimension (LxWxT) 1.11x0.0127x0.0032 m 
Young’s Modulus E 200GPa 
Shear Modulus G 80GPa 
(a1, a2) (1/2, 1/2) 
Time step size t 0.01 sec 
Initial tip location (x,y) = (1.0177m, 0.4061m) 
Initial velocity ),,( 000 YX (0,0,0)
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Figure 3 Beam tip displacement in one cycle 
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Figure 4 Snapshot of a free-vibrating beam 

Figure 5 shows the kinetic energy distribution in one cycle. 
Clearly, the kinetic energy is dominated by the translational 
energy in the y direction, which is much larger than the 
rotational energy. For this reason the effect of rotational 
inertia has always been neglected in structural mechanic 
problems. Figure 6 shows the energy distribution between 
kinetic and potential. It is worth noting that there is no energy 
loss during the temporal integration. 

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

t (sec)

E
ne

rg
y 

(J
)

x translational energy

y translational energy

 rotational energy

Figure 5 Kinetic energy of the vibrating beam 
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Figure 6 Energy balance of the beam 

An experiment has also been conducted to measure the 
natural frequency of the steel rod whose material properties 
are listed in Table 1. The x direction of the rod is parallel to 
the direction of gravity so that the effect of weight is 
minimized. A proximity sensor (Keyence EZ18T) is placed at 
the undeflected tip position such that it is ON if the tip of the 
rod approaches and OFF if not. The period of vibration can be 
recorded by adding two adjacent OFF time intervals. As 
shown in Fig. 10, the period is approximated 0.485 second 
which is very close to that predicted by the previous 
simulation result (0.49 second).  

Figure 7 Experiment setup 
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Figure 8 Period of a free vibrating steel rod 

5 CONCLUSIONS 
A complete dynamic model, which accounts for bending, 

shear and axial deformations with no geometric 
approximation, has been presented for analyzing compliant 
links capable of large deflection with large overall motion. 
Specifically, we showed how the effect of shear angles on 
large deformation can be incorporated as geometric 
constraints in the governing equations derived using 
Hamilton’s principle for predicting the transient response of a 
compliant link. In addition, we demonstrated a numerical 
method that combines a Newmark scheme with shooting 

method to solve the equations, and that the shooting method 
can avoid the shear locking- a common problem when using 
finite element procedures. Finally, an illustrative example of 
a free-vibrating steel rod has been given to show the 
application of the model. The simulation result of the 
vibrating rod has matched well with the experiment data. In 
this paper we present the dynamic model for predicting the 
motion of one compliant link, its extension to analyze a 
system with multiple compliant links is been studied. 
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